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1.1 Introduction:  

In this modern age of computers, primes play an important role to make 

our communications secure. So understanding primes are very important. 

In Section 1.1., we give an introduction to primes and its properties and 

give its application to encryption in 1.2. The concept of binary numbers 

and writing a number in binary and converting a number in binary to 

decimal is presented in 1.3. The Section 1.4 introduces the concept of 

complex numbers with some basic properties. In Sections 1.5, 1.6 and 1.7. 

logarithms, its properties and applications to real life problems are 

introduced. Finally in Section 1.8 we give a number of word problems 

which we come across in everyday life. 

 

 

Integers 

Binary System Primes & factorisation 

Computer 
Encryption & 
Cryptography 

Indices & Logarithms 

Real Life 
Applications 



 [3]

1.2 Prime Numbers 

We say integer a divides b, and write a|b in symbols, if b = ac with c ∈ Z. For 

example 9|27. If a|b, we say a is a factor or a is divisor of b. And we also say b 

is a multiple of a. It is easy to see that 1 and –1 are divisors of any integer and 

every non-zero integer is a divisor of 0. We write a|b if a does not divide b. For 

example 5|13. 

Prime numbers are the building blocks of number system. A positive integer  

p > 1 is called a prime if 1 and p are the only positive divisors of p. For example, 

2, 3, 5, 7, 11, 13, ..... are primes. We say a positive integer n > 1 is composite if it is 

not a prime. Thus a composite number n > 1 has a positive divisor different from 

1 and n itself. For example, 4, 6, 8, 9, 10, ..... are composites. The number 1 is 

neither a prime nor a composite. 

One of the important properties of positive integers for which the primes play an 

important role is The Fundamental Theorem of Arithmetic. This theorem states 

that every positive integer n > 1 can be written as product of primes and it is 

unique upto order of primes. Hence every n ∈ N can be written uniquely in the 

form 

 31 2 raa a a
1 2 3 rn P P P .....P  

where p1 < p2 < ..... < pr are distinct primes and a1, a2, ....., ar are positive integers. 

This is called the unique factorization of n. For example 

� 10 = 2 · 5 

� 36 = 22 · 32 

� 105 = 3 · 5 · 7 

� 104568 = 23 · 3 · 4357. 

For a prime p, the factorization of p is just p = p. Now you can answer why 1 is 

not considered a prime. If 1 is a prime, then 

 10 = 1 · 2 · 5 = 12 · 2 · 5 = 13 · 2 · 5 = ..... = 1r · 2 · 5 

for any r > 1, thereby giving a number of factorization of 10, thereby violating 
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the Fundamental Theorem of Arithmetic. Also 1 cannot be a considered a 

composite number. (Why?)  

A consequence of the Fundamental Theorem of Arithmetic is that every n > 1 

has a prime divisor p. Clearly n itself is the unique prime divisor p if n is a prime 

and 1 < p < n if n is composite. This consequence implies one of the first theorem 

in Mathematics, which is well-known as Euclid’s Theorem. 

Theorem 1.1.1. Euclid’s Theorem: There are infinitely many prime numbers. 

Proof. Suppose there are finitely many prime numbers, viz., p1, p2, ...... , pr. 

Consider the number. 

 N = p1p2 ..... pr + 1 

Clearly N > 1. Hence by the Fundamental Theorem of Arithmetic, it has prime 

divisor p. Then p = pi for some 1 ≤ i ≤ r. However none of the primes pi|N for 

each 1 ≤ i ≤ r. 

Also N  pi for any i. This is a contradiction which proves that there are infinitely 

many primes. 

Though Euclid’s Theorem tells us that there are infinitely many primes, finding 

large numbers is a challenge. In fact the largest known prime number as of 

today is the 24862048 digit prime 

 282589933 – 1 

which was discovered in 2018. This is a special kind of primes called Mersenne 

Primes. 

One of the ways to check whether a given number is a prime is the well-known 

Sieve of Erasthosthenes. This works on the principle that n > 1 is composite if has 

a prime divisor p ≤ n . We illustrate this Sieve and find all primes upto 100. We 

list all positive integers upto 100. A numbers 1 < n ≤ 100 is a composite if n has a 

prime divisor ≤ n  = 100  = 10. 

The primes upto 10 are 2, 3, 5, 7. We start by crossing 1. Since 2 is a prime, we 

circle 2 and strike off all numbers divisible by 2. 
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3 is the first number among the remaining ones. We circle 3 now and strike off all 

numbers divisible by 3. 5 is the first among the remaining numbers which we 

circle and strike off all numbers divisible by 5. Next 7 is the first number left which 

we circle now and strike off all numbers divisible by 7. 

 

The remaining numbers are all primes. In fact all the primes upto 100 are 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 
97 

which are 25 in number. This method to find primes is not suitable when the 
numbers are very large. 

Suggested Project: Find all prime numbers upto 10000 by using the Sieve of 

Erasthosthenes. 
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Srinivasa Ramanujan is one of Indian genius who is very much well-known for his 

contributions to Mathematics, particularly prime numbers. Given n  1,  

we define the n-th Ramanujan Prime to be the least positive integer Rn such 

that there are at least n primes between 
x( )
2

  and nx x R   . It turns out that Rn 

are all primes. The first ten Ramanujan primes are 

R1 = 2, R2 = 11, R3 = 17, R4 = 29, R5 = 41, R6 = 47, R7 = 59, R8 = 67, R9 = 71, R10 = 97. 

1.3  Why prime numbers are important?: Encryptions using Prime Numbers 

Primes are one of the most useful numbers nowadays as they have lots of 

applications in the current digital world. In fact, prime numbers are used to 

make our online communications secure. In this section, we will explain how 

prime numbers are used in Cryptography. 

Cryptography is the science of using mathematics to encrypt and decrypt 

data. It enable us to store sensitive information or transmit it across insecure 

networks (like the Internet) so that it cannot be read by anyone except the 

intended recipient. Cryptanalysis is the science of analyzing and breaking 

secure communication. It involves an interesting combination of analytical 

reasoning, application of mathematical tools, pattern finding, patience, 

determination, and luck. Basically Cryptanalysts are attackers and 

Cryptographers are defenders. Cryptology is the science which involves both 

Cryptography and Cryptanalysis. 

In Cryptography, we have the notion of Encryption and Decryption. Encryption 

is the method of disguising plaintext (or the message in Data format which can 

be read and understood without any special measures) in such a way as to 

hide its substance. Encrypting plaintext results in unreadable gibberish called 

Cipher text. Encryption ensures that information is hidden from anyone for 

whom it is not intended, even those who can see the encrypted data. 

Decryption is the process of reverting cipher text to its original plaintext. 

Cryptography works by using a cryptographic algorithm which is a 

mathematical function used in encryption and decryption process. It works in 

combination with a key (a word, number or phrase) to encrypt the plaintext. 
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Same plaintext encrypts to different ciphertext with different keys. The security of 

encrypted data depends entirely on two things. The strength of the 

cryptographic algorithm and the secrecy of the key. A Cryptosystem is a 

cryptographic algorithm plus all possible keys and all the protocols that make it 

work. Following are the requirements for a good cryptosystem. 

(a) Authentication: Provides the assurance of some ones identity. 

(b) Confidentiality : Protects against disclosure to unauthorized identities. 

(c) Non-Repudiation: Protects against communications originator to later 

deny it. 

(d) Integrity: Protects from unauthorized data alteration. 

Some of the Cryptosystems are RSA, Diffie-Hellman, ElGamal, Elliptic Curve 

Cryptosystems. RSA which was invented in 1978 is one of the most popular and 

widely used cryptosystem. It is named after its inventors Ron Rivest, Adi Shamir 

and Richard Adleman. This cryptosystem is based on the property of primes. We 

will now explain the RSA Cryptosystem and illustrate how the prime numbers are 

used. For that we need some basics. 

Definition: A positive integer d is the greatest common divisor or highest 

common factor of two numbers a and b if d is the largest positive common 

divisor of a and b, i.e., 

� d|a and d|b, 

� If c|a and c|b, then c ≤ d. 

We write d = gcd(a, b) or simply d = (a, b) if d is the greatest common divisor of 

a and b. For example 

� gcd (10, 25) = 5 

� gcd (3, 17) = 1 

� gcd (4680, 15708) = 12. 

We say a and b are relatively prime or coprime if gcd(a, b) = 1. For example, 3 
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and 17 are relatively prime. Note that gcd(a, b) = gcd(b, a). If a|b. then gcd(a, 

b) = a. 

One of the ways to find gcd(a, b) is to compute the unique factorization of a 

and b. If we know the factorizations 

 
1 2 r

1 2 r

a a a
1 2 r

b b b
1 2 r

a P P .....P and

b P P .....P




  

then 

 d = gcd (a, b) = p1
min(a1, b1) p2

min(a2, b2) ...... pr
min(ar, br ) 

For example, let a = 4680 and b = 15708. Then 

 a = 4680 = 23 · 32 · 5 · 13 = 23 · 32 · 51 · ·70 · 110 · 131 · 170 

 b = 15708 = 22 · 3 · 7 · 11 · 17 = 22 · 31 · 50 · 71 · 111 · 130 · 171 

so that 

gcd (4680, 15708) = 2min(2, 3) · 3min(2, 1) · 5min(1, 0) · 7min(0, 1) · 11min(0, 1) · 13min(1, 0) · 17min(0, 1) 

= 22 · 31 = 12. 

For large numbers, finding factorization is not easy. For that we use Euclid’s GCD 

Algorithm. 

Given positive integers a > 0 and b, there exist unique quotient q and remainder 

r with 

 b = aq + r, 0 ≤ r < |b|. 

Note that r = 0 if and only if b|a. Also q = r = 0 when b = 0 and we have 0 = a . 0 

+ 0. We use the following fact. 

 gcd (a, b) = gcd (a, b − aq) for any q 

Now we define Euclid’s GCD Algorithm and also illustrate with an example. Let 

b > a and a|b. Then 
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b = aq + r, 0 < r < a a = 4680, b = 15708  

a = rq1 + r1, 0 < r1 < r 15708 = 3 · 4680 + 1668, 0 < 1668 < 4680 

r = r1q2 + r2, 0 < r2 < r1 4680 = 2 · 1668 + 1344, 0 < 1344 < 1668 

r1 = r2q3 + r3, 0 < r3 < r2 1668 = 1 · 1344 + 324, 0 < 324 < 1344 

r2 = r3q4 + r4, 0 < r4 < r3 1344 = 4 · 324 + 48, 0 < 48 < 324 

r3 = r4q5 + r5, 0 < r5 < r4 324 = 6 · 48 + 36, 0 < 36 < 48 

r4 = r5q6 + 0  48 = 1 · 36 + 12, 0 < 12 < 36 

  36 = 3 · 12 + 0.  

Here the last non-zero remainder, namely r5 is the gcd (a, b). The novelty of this 

method is that we do not need to factor a and b. 

We now introduce modular arithmetic. Let m  1. We say a is congruent to b 

modulo m and write a  b (mod m) if a – b is divisible by m or a = b + km for 

some integer k. For example, 17  2 (mod 5) since 17 – 2 = 15 is divisible by 5. It is 

easy to see that if a b (mod m), then b a (mod m). Basically a b (mod m) means 

both a and b has the same remainder when divided by b. One of the properties 

of modular arithmetic is the following: 

 If a ≡ b (mod m) and t ≥ 1, then at ≡ bt (mod m). 

We can now state Euler’s Theorem. 

Theorem 1.2.1. Euler’s Theorem: Let m > 1 be an integer and a be any integer 

coprime to m. Then 

 aφ(m) ≡ 1(mod m) 

where φ(m) is the Euler-totient function given by 

  
|

11
p M

p prime

m m
p


 

   
 

 

For instance, let m = 35. Then we have φ (m) = 
1 135 1 1
5 7

       
   

 = 24. Hence for 
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any a coprime to 35, we have a24  1 (mod 35). In particular 324 has a remainder 

1 when divided by 35. For our application in RSA, we will be considering m of the 

form m = pq where p, q are distinct primes. Then φ(m) = φ (pq) = (p – 1)(q –1). 

We state the RSA Cryptosystem now. 

RSA Cryptosystem: Alice creates a public and private key as follow. 

1. Choose two large prime numbers p and q and compute n = pq. 

2. Keep p and q secret, known only to yourself, but make n public. 

3. Choose an integer 1 < e < φ(n) = (p−1) (q−1) with the property that (e, φ 

(n)) = 1. 

4. e is called the enciphering key. 

5. The pair (n, e) is the Public key and is made known to everyone. 

6. Compute the deciphering key d by solving the congruence  

ed ≡ 1{mod φ (n)} with 1 < d < (p − 1)(q − 1). 

7. Deciphering key d must be kept private, known only to Alice 

Sending a message to Alice: 

1. Bob converts the message into a string of numbers M. 

2. Bob uses public key (n, e) of Alice and compute C  Me(mod n). C is the 

ciphertext.  

3. The ciphertext C is transmitted to Alice. 

4. Alice uses her private key d to get back the original message M by 

computing Cd(modulo n). 

This works since ed ≡ 1 (mod φ(n)) implies ed = 1 + kφ (n) for some integer k and 

hence 

 Cd ≡ (Me)d = Med = M1+k φ(n) = M (Mφ(n))k ≡ M (mod n) 

by using Euler’s Theorem. 
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We illustrate this with an example. 

An Example: 

1. Choose large primes p = 71 and q = 101. Then n = 7171 and φ (n) = 70 100 

= 7000. 

2. Choose an enciphering key e = 37; Check that (37, 7000) = 1. 

3. Compute the deciphering key d by finding a solution to 37d ≡ 1 (modulo 

7000). The solution d with 1 < d < 7000 is given by d = 3973 which is the 

deciphering key d = 3973. 

3. (7171, 37) is the Public Key and 3973 is the private key. 

Let message M = 117. The Ciphertext is 

 C = 11737 ≡ 227 (mod 7171). 

This can be safely transmitted to me. Anyone who intercepts it will have to 

factor 7171 to decrypt it. Now use the decryption key by raising C to the 3973rd 

power and taking the result modulo 7171 to find 

 M = 2273973 ≡ 117 (mod 7171). 

which is the original message M . 

Suggested Project: Square and Multiply algorithm to compute ak (mod m) 

faster. 

1.4 Binary Numbers 

Binary numbers are base 2 numbers which are made up of only 0!s and 1!s. For 

example, 

 110100 

is an example of a binary number. Like the usual numbers which are in base 10, 

the binary numbers are in base 2. Let us look for an example. Consider the 

number 123456. We have 
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23456 = 25(1 + 732) = 25 + 25 × 22(1 + 182) = 25 + 27 + 27 × 2(1 + 91) 

 = 25 + 27 + 28 + 28(1 + 90) = 25 + 27 + 28 + 28 × 2(1 + 44) 

 = 25 + 27 + 28 + 29 + 29 × 22(1 + 10) = 25 + 27 + 28 + 29 + 211 + 211 × 2(1 + 4) 

 = 25 + 27 + 28 + 29 + 211 + 212 + 212 × 22 = 25 + 27 + 28 + 29 + 211 + 212 + 214 

Writing 23456 as 

0 × (20 + 2 + 22 + 23 + 24) + 25 + 0 × 26 + 27 + 28 + 29 + 0 × 210 + 211 + 212 + 0 × 213 + 214 

we get the binary expansion of 23456 as 

 23456 = (101101110100000)2 

The digits are 0 and 1 and they are written starting with the coefficient of 

highest power of 2 on the right upto the coefficient of 20 on the right. The 

number of 0's on the right of binary expansion gives the exact power of 2 

dividing the number. For example 5 is the exact power of 2 dividing 23456, we 

have five 0's on the right of the binary expansion of 23456. 

Again, given a number in binary form as N = (xnxn−1 .....x1x0)2, we get the decimal 

expansion of N by 

 N = x0 + x12 + · · · + xn−12n−1 + xn
2n. 

For example, N = (1010101010)2 in decimal notation is given by 

N = 0 + 1 × 21 + 0 × 22 + 1 × 23 + 0 × 24 + 1 × 25 + 0 × 26 + 1 × 27 + 0 × 28 + 1 × 29 

 = 21 + 23 + 25 + 27 + 29 = 682. 

While writing in decimal notation, we can only sum the powers of 2 for which 

the corresponding coefficient is 1. 

Exercises: 

1. Write the following numbers in decimal notation. 

 (1010101100110)2, (101011000110)2, (101111100110)2, (1000000000110)2 

2. Write the following numbers in decimal notation. 
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 654321, 1000001, 56237801, 2468097531, 963258741 

3. Simplify the following and write in decimal notation. 

 (1000101111100)2 + (1100101000100)2 (11101100100)2 

4. Simplify the following and write in binary notation. 

 (1111000110000)2 × 5642371 

1.5 Complex Numbers (Preliminary Idea only) 

Complex numbers arise from trying to find square roots of real numbers. It is 

clear that the equation x2 + 1 = 0 has no solution in real numbers. In other other 

words, –1 does not have a real square root. To overcome this problem, the 

concept of real and imaginary components of a numbers are introduced. 

Let us denote by i a square root of 1 so that i2 = 1. Then (i)2 = i2 = 1. The number i, 

called iota, has the property that 

 i4n = 1,  i4n+1 = i, i4n+2 = −1, i4n+3 = −i for all n ≥ 0. 

We define the set of Complex Numbers C as follow. 

 C = {z = a + bi : a, b ∈ R} 

For z = a + bi ∈ C, we say a is the real part of z, denoted by Re(z), and b is the 

imaginary part of z, denoted by Im(z). For example, 1 + i is a Complex number 

with both real and imaginary parts equal to 1. Writing every real number r ∈ R as 

r = r + oi, we see that the set of Real numbers is a subset of the set of Complex 

numbers. 

We can view z = a + bi as a polynomial a + bx computed at x = i. Using the 

properties of powers of i, given two complex numbers z1 = a1 + b1i and z2 = a2 + 

b2i, we can define the sum z1 + z2 and product z1z2 as 

 z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i 

and 

 z1z2 = (a1 + b1i) (a2 + b2i) = a1a2 + a1b2i + b1a2i + b1b2i2 
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 = a1a2 + (a1b2 + a2b1)i − b1b2 = (a1a2 − b1b2) + (a1b2 + a2b1)i 

For example, (1 + i) + (2 + 3i) = 3 + 4i and (1 + i)(2 + 3i) = 2 + 3i + 2i + 3i2 =  

(2 - 3) + (3 + 2)i = -1 + 5i 

Given a complex number z = a + bi, we define the complex conjugate  

z  = a - bi. This is the complex number whose imaginary part is negative of the 

imaginary part of z. For example, 2 – 5i = 2 + 5i. For z  = r  R, we have z  = z = r 

as the Im(z) = 0 in that case. 

For complex numbers z1 and z2, we have 

 1 2 1 2z z z z    and   1 2 1 2z z z z  

Also for z = a + bi, we have 

 zz  = (a + bi)(a − bi) = a2 + b2 ≥ 0 

since a, b are reals. Define the absolute value or modulus of z = a + bi, denoted 

by |z|, as 

 2 2zz a b   

where we take the non-negative square root a2 + b2. For example, |1 + i| = 
2 21 1 2  . 

Following are some properties of the absolute value of complex numbers. Here 

z, z1, z2 are complex numbers. 

1. |z| = | − z| = | z | ≥ 0 for all z ∈ C. 

2. |z| = 0 if and only if z = 0 = 0 + 0i. 

3. |z1z2| = |z1||z2| for all z1, z2 ∈ C. 

4. Triangle inequality: |z1 + z2| ≤ |z1| + |z2| for all z1, z2 ∈ C. 

 For z = a + bi  0, we have 

  1
2 2 2 2 2 2

1 z a bi a biz
z a b a b a bzz

 
    

  
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For example, (2 + 3i)−1 =
2 3

13 13
i

 . For z1 − 1, z2 ∈ C with z2  0, we have 

 
2

211 1
1 2

2 2

z z zz z
z z

   

As an example, we have 

 
  

2 2

2 3 4 52 3 7 22 7 22
4 5 4 5 41 41 41

    
   

 
i ii i i

i
 

Given z ∈ C, z  0, we have 

 2 2 2 2 2 2

z a bi a bi
z a b a b a b


  

  
 

Let 0 ≤ θ < 2π be such that sin θ = 2 2

b
a b

 and cos θ = 2 2

a
a b

. The angle θ is called 

the argument of z and we have 

 z = |z|(cos θ + sin θ i) = |z|eθi 

which is called the Euler formula for the complex number z. For example, 

 41 2 cos sin 2
4 42 2

             

iii z i e
   

Exercises: 

1. Find the complex conjugates and modulus of the following complex 

numbers. 

 1 − i, 10 + 4i,      (3 + 5i)(4 + 6i),     
2 7
5 4

i
i




 

2. Compute z, z2, z3, z−1 for the following z: 

 1–i, 3 + i, 4 + 6i,     
9 2
2 9

i
i




,    1 + πi, 3 6i  
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1.6 Indices, Logarithm and Antilogarithm 

Indices 

A power of a number is the product of a certain number of factors, all of which 

are the same. For example, 59 is a power, in which the number 5 is called the 

base and the number 9 is called the index or exponent. In fact, for any a, we 

have 

 a1 = a 

 a2 = a · a 

 a3 = a · a · a 

 ..... 

 an = a · a · a · a · a..... n times 

for any n. We have 24 = 2.2.2.2 = 16 for example. 

Let a and b be real numbers and m and n be integers. The Indices satisfy the 

following rules: 

1. A Zero power is given by a0 = 1 for a  0. For example 40 = 1. We note that 

00 is not defined. It is sometimes called an indeterminant form. 

2. For a positive n, the negative power a−n is defined by 

  1n
na

a
   

 For example, a−3 = 3

1
a

. In particular 2−1 =
1
2

, 2−2 = 2

1
2

 = 
1
4

, 2−3 = 3

1
2

 = 
1
8

 and 

so on. 

3. A Fractional power, denoted by 
1

nna a , is given by 

   n
n a a  

 For example, 
1
29 9  = 3 and 

1
338 8  = 2 

All indices satisfy the following laws. Let a and b be real numbers and m and n 

be rational numbers. 
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1. To multiply powers with the same base, add the indices. 

  aman = am+n 

 For example, 23 . 22 = 25 = 32 

2. To divide powers with the same base, subtract the indices. 

  
m

m n
n

a a
a

    

For Example, 
3

3 2
2

2 2
2

  = 2 and 
2

2 3
3

2 2
2

  = 1 12
2

  . Note 
m

m m
m

a a
a

  = a0 = 1 for 

a  0 

3. To raise a power to a power, multiply the indices. 

  (am)n = amn 

 For example, (22)3 = 26 = 64 

4. A power of a product is the product of the powers. 

  (ab)m = ambm 

 For example, 32 . 42 = (3 . 4)2 = 122 = 144. 

5. A power of a quotient is the quotient of the powers. 

  
m m

m

a a
b b

   
 

  when b  0 

 For example, 
22

2
2

6 6 3
2 2

   
 

 = 9 

Simplify the following by the above rules. 

1. 
1 4
5 5.a x x  

2. 
3

2 2a x x   

3. 
65

3a x
 

  
 
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�

4. 
3 4

5 2

x ya
x y

  

1.7 Logarithms 

The Logarithm is the inverse image of an index. The logarithm of any positive 

number to a given base (a positive number not equal to 1) is the index of the 

power of base which is equal to that number. If N and b  1 are any two positive 

real numbers and for some real x, bx = N, then x is called the logarithm of N to 

the base b. It is written as logbN = x. That is, if N = bx, then logbN = x. Since 34 = 81, 

the value of log381 = 4. Some examples: 

1. log10 0.01 = –2 since 10–2 = 0.01 

2. log2 
12
2

  since 
1
22 2  

3. logb b = 1 since b1 = b for any b > 0, b  1. 

4. logb 1 = 0 since b0 = 1 for any b > 0, b  1. 

From the definition of logarithms(logs), we obtain the following for a > 0, b > 0, b 

 1. 

 logb bn = n and blogb a = a 

System of logarithms: There are two systems of logarithms, natural logarithm and 

common logarithms which are used most often. 

1. Natural Logarithm: These were discovered by Napier. They are calculated 

with respect to the base e which is approximately equal to 2.718. We 

usually denote logex by ln x 

2. Common Logarithms: Logarithms to the base 10 are known as common 

logarithms. 

Here we list some facts about logarithms: 

1. Logs are defined only for positive real numbers. 

2. Logs are defined only for positive bases different from 1. 
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3. In logb a, neither a nor b is negative but the value of logb a can be 

negative. For example, log100.01 = −2 since 10−2 = 0.01. 

4. Logs of different numbers to the same base are different, i.e. if a  c, then 

logb a  logb c. 

 In other words, if logb a = logb c, then a = c. 

5. Logs of the same number to different bases have different values i.e.

 if a  b, then loga c  logb c. In other words, if loga c = logb c, then a = b. 

Some important properties of logarithms: 

1. Logarithm of a Product: 

  logb (MN ) = logb M + logb N 

 This follows from the property bm+n = bmbn. As an example, we have log2 (4 

· 8) = log2 4 + log2 8 = 2 + 3 = 5. If the product has many factors, we just 

add the individual logarithms: 

  logb(ABCD) = logb A + logb B + logb C + logb D 

2. In particular, we get the Logarithm of a power: 

  logb(an) = n logb a 

 Hence for example log2(3100) = 100 log23 

3. Logarithm of a quotient: 

  logb 
M
N

 
 
 

 = logb M − logb N 

 This also follows from the property bm−n = 
m

n

b
b

. For example 

  log3 
81
8

 
 
 

 = log3 81 − log3 23 = 4 − 3 log3 2 

4. Logarithm in two different bases b1 and b2: 

  logb2 N = (logb1 N )(logb2 b1) 

 In particular, when b1 = e and b2 = 10, we have 
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 log10 N = (loge N )(log10 e) = 0.434 loge N  and  loge N = (log10 N )(loge 10) 

 = 2.303 log10N 

Exercises: 

1. Expand logb 

a b

c d

a b
c d

 
 
 

 

2. Expand logb 

6

7

4
9

x
y

 
 
 

 

3. Simplify log10 a + log10 b2 + log10 c3 

4. Simplify loga a – logb b2 + logc c3 – logd d4 

Anti-logarithm 

The anti-logarithm of a number is the inverse process of finding the logarithms of 

the same number. If x is the logarithm of a number y with a given base b, then y 

is the anti-logarithm of (antilog) of x to the base b. 

 If logb y = x, then y = antilog of x. 

Natural Logarithms and Anti-Logarithms have their base as 2.7183. The 

Logarithms and Anti-Logarithms with base 10 can be converted into natural 

Logarithms and Anti-Logarithms by multiplying it by 2.303. 

The Zero Index 

We have 
7

7

9
9

 = 1. On the other hand, applying the above index law 2 and 

ignoring the condition m > n, we have 
7

7

9
9

 = 90. If the index laws are to be 

applied in this situation, then we need to define 90 to be 1. More generally, if a  

0, then we define a0 = 1. We note that 00 is not defined. It is sometimes called an 

indeterminant form. 

The index laws are also valid for the zero index. And for any non-zero a and b, 

we have 

  (7a3b2)0 = 1 
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Negative Exponents 

Let's look at the decreasing powers of 2. We have 

 25 = 32, 24 = 16, 23 = 8, 22 = 4, 21 = 2, 20 = 1, 2−1 =?, 2−2 =? 

As we can see, at every step when we decrease the index, the number is 

halved. Therefore it makes sense to define 

  1 12
2

   

Further, continuing the pattern, we define 

  2 3
2 3

1 1 1 12 , 2 ,
4 2 8 2

       and soon 

1.8 Laws and Properties of Logarithms  

Logarithms are useful in may domains, particularly in solving exponential 
equations. For example, we use logarithms to measure Richter scale in 
earthquakes, decibel measures in sound, pH balance in Chemistry and the 
brightness of stars, to name a few. 

Let us look at the example of how logarithms are in used in measuring the 
magnitude of earthquakes. The energy released by an earthquake gives the 
magnitude of the earthquake. 

The Richter magnitude scale (commonly known as Richter scale) is used to 
measure this magnitude of an earthquake. Seismographs detect movement in 
the earth's surface and measures the amplitute of the earthquake wave. Let  
be the measure of the earthquake wave amplitute and 0  be the measure of 
smallest detectable wave (or the standard wave). 
Then the Richter Scale is given by the formula 

10
0

R = log ( )


 

 
Higher the Richter scale, more is the intensity of the earthquake and damages 
caused. Usually earthquakes of Richter scale up to 4.9 does not cause damage. 
The earthquakes of Richter scale 6-6.9 and above cause major damages. The 
strongest earthquake till date was recorded in Chile in 1960 with Richter Scale of 
9.5 which caused severe damage. 

Example 1: There was an earthquake with a wave amplitude 2020 times the 
wave. Calculate the Richter scale with two decimal digits? 
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Solution: We have 02020   This gives 

10 10
0

R = log ( ) log 2020 3.3.


   

Hence the Richter scale of the earthquake is 3:3. 

Example 2: A scientist running an experiment finds that a particular bacterial 
colony doubles its population every 20 hours. He starts with 200 bacteria cells. 

She expects the number of cells to be given by the formula 
t

20b 200( 2) where 
t is the number of hours for which the experiment is running. Find the number of 
hours after which there will be 500 bacteria cells. 

Solution: Taking logarithms on both sides of 
t

20b 200( 2) and putting b = 500, we
get 

t
20 t tlog500 log b log 200 log( 2) log 200 log 2 log 200 log 2.

20 40
      

This gives 
500 540log 40 loglog 500 log 200 200 2t 40 log 22.964.

log 2 log 2 log 2


      

Therefore after 23 hours, there will be 500 bacteria cells. 

Exercises: Let the population of the world in t years after 2010 be given by the 
formula P = 4.7(1.02)t billions. 

i) Calculate the total population of the world in the year 2029 to the nearest
million.

ii) Find the year in which the population will be double of the population of

2020.


